Documentation

Std.Data.Iterators.Lemmas.Combinators.Monadic.DropWhile

theorem Std.IterM.Intermediate.dropWhileM_eq_dropWhileWithPostcondition {α : Type u_1} {m : Type u_1 → Type u_2} {β : Type u_1} [Monad m] [MonadAttach m] [Iterator α m β] {it : IterM m β} {P : βm (ULift Bool)} {dropping : Bool} :
theorem Std.IterM.Intermediate.dropWhile_eq_dropWhileWithPostcondition {α : Type u_1} {m : Type u_1 → Type u_2} {β : Type u_1} [Monad m] [Iterator α m β] {it : IterM m β} {P : βBool} {dropping : Bool} :
dropWhile P dropping it = dropWhileWithPostcondition (pure ULift.up P) dropping it
theorem Std.IterM.dropWhileM_eq_intermediateDropWhileM {α : Type u_1} {m : Type u_1 → Type u_2} {β : Type u_1} [Monad m] [MonadAttach m] [Iterator α m β] {it : IterM m β} {P : βm (ULift Bool)} :
theorem Std.IterM.dropWhile_eq_intermediateDropWhile {α : Type u_1} {m : Type u_1 → Type u_2} {β : Type u_1} [Monad m] [Iterator α m β] {it : IterM m β} {P : βBool} :
theorem Std.IterM.step_intermediateDropWhileWithPostcondition {α : Type u_1} {m : Type u_1 → Type u_2} {β : Type u_1} [Monad m] [Iterator α m β] {it : IterM m β} {P : βIterators.PostconditionT m (ULift Bool)} {dropping : Bool} :
theorem Std.IterM.step_dropWhileWithPostcondition {α : Type u_1} {m : Type u_1 → Type u_2} {β : Type u_1} [Monad m] [Iterator α m β] {it : IterM m β} {P : βIterators.PostconditionT m (ULift Bool)} :
theorem Std.IterM.step_intermediateDropWhileM {α : Type u_1} {m : Type u_1 → Type u_2} {β : Type u_1} [Monad m] [MonadAttach m] [LawfulMonad m] [Iterator α m β] {it : IterM m β} {P : βm (ULift Bool)} {dropping : Bool} :
(Intermediate.dropWhileM P dropping it).step = do let __do_liftit.step match __do_lift.inflate with | IterStep.yield it' out, h => if h' : dropping = true then do let __do_liftMonadAttach.attach (P out) match __do_lift with | { down := true }, hP => pure (Shrink.deflate (PlausibleIterStep.skip (Intermediate.dropWhileM P true it') )) | { down := false }, hP => pure (Shrink.deflate (PlausibleIterStep.yield (Intermediate.dropWhileM P false it') out )) else pure (Shrink.deflate (PlausibleIterStep.yield (Intermediate.dropWhileM P false it') out )) | IterStep.skip it', h => pure (Shrink.deflate (PlausibleIterStep.skip (Intermediate.dropWhileM P dropping it') )) | IterStep.done, h => pure (Shrink.deflate (PlausibleIterStep.done ))
theorem Std.IterM.step_dropWhileM {α : Type u_1} {m : Type u_1 → Type u_2} {β : Type u_1} [Monad m] [MonadAttach m] [LawfulMonad m] [Iterator α m β] {it : IterM m β} {P : βm (ULift Bool)} :
(dropWhileM P it).step = do let __do_liftit.step match __do_lift.inflate with | IterStep.yield it' out, h => do let __do_liftMonadAttach.attach (P out) match __do_lift with | { down := true }, hP => pure (Shrink.deflate (PlausibleIterStep.skip (Intermediate.dropWhileM P true it') )) | { down := false }, hP => pure (Shrink.deflate (PlausibleIterStep.yield (Intermediate.dropWhileM P false it') out )) | IterStep.skip it', h => pure (Shrink.deflate (PlausibleIterStep.skip (Intermediate.dropWhileM P true it') )) | IterStep.done, h => pure (Shrink.deflate (PlausibleIterStep.done ))
theorem Std.IterM.step_intermediateDropWhile {α : Type u_1} {m : Type u_1 → Type u_2} {β : Type u_1} [Monad m] [LawfulMonad m] [Iterator α m β] {it : IterM m β} {P : βBool} {dropping : Bool} :
(Intermediate.dropWhile P dropping it).step = do let __do_liftit.step match __do_lift.inflate with | IterStep.yield it' out, h => if h' : dropping = true then match hP : P out with | true => pure (Shrink.deflate (PlausibleIterStep.skip (Intermediate.dropWhile P true it') )) | false => pure (Shrink.deflate (PlausibleIterStep.yield (Intermediate.dropWhile P false it') out )) else pure (Shrink.deflate (PlausibleIterStep.yield (Intermediate.dropWhile P false it') out )) | IterStep.skip it', h => pure (Shrink.deflate (PlausibleIterStep.skip (Intermediate.dropWhile P dropping it') )) | IterStep.done, h => pure (Shrink.deflate (PlausibleIterStep.done ))
theorem Std.IterM.step_dropWhile {α : Type u_1} {m : Type u_1 → Type u_2} {β : Type u_1} [Monad m] [LawfulMonad m] [Iterator α m β] {it : IterM m β} {P : βBool} :