Documentation

Std.Data.Iterators.Lemmas.Combinators.Drop

theorem Std.Iter.drop_eq {α β : Type u_1} [Iterator α Id β] {n : Nat} {it : Iter β} :
theorem Std.Iter.step_drop {α β : Type u_1} [Iterator α Id β] {n : Nat} {it : Iter β} :
(drop n it).step = match it.step with | IterStep.yield it' out, h => match n with | 0 => PlausibleIterStep.yield (drop 0 it') out | k.succ => PlausibleIterStep.skip (drop k it') | IterStep.skip it', h => PlausibleIterStep.skip (drop n it') | IterStep.done, h => PlausibleIterStep.done
theorem Std.Iter.atIdxSlow?_drop {α β : Type u_1} [Iterator α Id β] [Iterators.Productive α Id] {k l : Nat} {it : Iter β} :
atIdxSlow? l (drop k it) = atIdxSlow? (l + k) it
@[simp]
theorem Std.Iter.toList_drop {α β : Type u_1} [Iterator α Id β] {n : Nat} [Iterators.Finite α Id] {it : Iter β} :
@[simp]
theorem Std.Iter.toListRev_drop {α β : Type u_1} [Iterator α Id β] {n : Nat} [Iterators.Finite α Id] {it : Iter β} :
@[simp]
theorem Std.Iter.toArray_drop {α β : Type u_1} [Iterator α Id β] {n : Nat} [Iterators.Finite α Id] {it : Iter β} :