Documentation

Mathlib.Data.Int.ConditionallyCompleteOrder

forms a conditionally complete linear order #

The integers form a conditionally complete linear order.

Equations
  • One or more equations did not get rendered due to their size.
theorem Int.csSup_eq_greatestOfBdd {s : Set } [DecidablePred fun (x : ) => x s] (b : ) (Hb : zs, z b) (Hinh : ∃ (z : ), z s) :
sSup s = (b.greatestOfBdd Hb Hinh)
@[deprecated Int.csSup_eq_greatestOfBdd (since := "2025-12-24")]
theorem Int.csSup_eq_greatest_of_bdd {s : Set } [DecidablePred fun (x : ) => x s] (b : ) (Hb : zs, z b) (Hinh : ∃ (z : ), z s) :
sSup s = (b.greatestOfBdd Hb Hinh)

Alias of Int.csSup_eq_greatestOfBdd.

@[simp]
@[deprecated Int.csSup_of_not_bddAbove (since := "2025-12-24")]
theorem Int.csSup_of_not_bdd_above {s : Set } (h : ¬BddAbove s) :
sSup s = 0

Alias of Int.csSup_of_not_bddAbove.

theorem Int.csInf_eq_leastOfBdd {s : Set } [DecidablePred fun (x : ) => x s] (b : ) (Hb : zs, b z) (Hinh : ∃ (z : ), z s) :
sInf s = (b.leastOfBdd Hb Hinh)
@[deprecated Int.csInf_eq_leastOfBdd (since := "2025-12-24")]
theorem Int.csInf_eq_least_of_bdd {s : Set } [DecidablePred fun (x : ) => x s] (b : ) (Hb : zs, b z) (Hinh : ∃ (z : ), z s) :
sInf s = (b.leastOfBdd Hb Hinh)

Alias of Int.csInf_eq_leastOfBdd.

@[simp]
@[deprecated Int.csInf_of_not_bddBelow (since := "2025-12-24")]
theorem Int.csInf_of_not_bdd_below {s : Set } (h : ¬BddBelow s) :
sInf s = 0

Alias of Int.csInf_of_not_bddBelow.

theorem Int.csSup_mem {s : Set } (h1 : s.Nonempty) (h2 : BddAbove s) :
sSup s s
theorem Int.csInf_mem {s : Set } (h1 : s.Nonempty) (h2 : BddBelow s) :
sInf s s