Documentation

Mathlib.Analysis.Normed.Field.Lemmas

Normed fields #

In this file we continue building the theory of normed division rings and fields.

Some useful results that relate the topology of the normed field to the discrete topology include:

def DilationEquiv.mulLeft {α : Type u_1} [NormedDivisionRing α] (a : α) (ha : a 0) :
α ≃ᵈ α

Multiplication by a nonzero element a on the left as a DilationEquiv of a normed division ring.

Equations
Instances For
    @[simp]
    theorem DilationEquiv.mulLeft_symm_apply {α : Type u_1} [NormedDivisionRing α] (a : α) (ha : a 0) (x : α) :
    (mulLeft a ha).symm x = a⁻¹ * x
    @[simp]
    theorem DilationEquiv.mulLeft_apply {α : Type u_1} [NormedDivisionRing α] (a : α) (ha : a 0) (x : α) :
    (mulLeft a ha) x = a * x
    def DilationEquiv.mulRight {α : Type u_1} [NormedDivisionRing α] (a : α) (ha : a 0) :
    α ≃ᵈ α

    Multiplication by a nonzero element a on the right as a DilationEquiv of a normed division ring.

    Equations
    Instances For
      @[simp]
      theorem DilationEquiv.mulRight_apply {α : Type u_1} [NormedDivisionRing α] (a : α) (ha : a 0) (x : α) :
      (mulRight a ha) x = x * a
      @[simp]
      theorem DilationEquiv.mulRight_symm_apply {α : Type u_1} [NormedDivisionRing α] (a : α) (ha : a 0) (x : α) :
      (mulRight a ha).symm x = x * a⁻¹
      @[simp]
      theorem Filter.map_mul_left_cobounded {α : Type u_1} [NormedDivisionRing α] {a : α} (ha : a 0) :
      map (fun (x : α) => a * x) (Bornology.cobounded α) = Bornology.cobounded α
      @[simp]
      theorem Filter.map_mul_right_cobounded {α : Type u_1} [NormedDivisionRing α] {a : α} (ha : a 0) :
      map (fun (x : α) => x * a) (Bornology.cobounded α) = Bornology.cobounded α
      theorem Filter.tendsto_mul_left_cobounded {α : Type u_1} [NormedDivisionRing α] {a : α} (ha : a 0) :
      Tendsto (fun (x : α) => a * x) (Bornology.cobounded α) (Bornology.cobounded α)

      Multiplication on the left by a nonzero element of a normed division ring tends to infinity at infinity.

      theorem Filter.tendsto_mul_right_cobounded {α : Type u_1} [NormedDivisionRing α] {a : α} (ha : a 0) :
      Tendsto (fun (x : α) => x * a) (Bornology.cobounded α) (Bornology.cobounded α)

      Multiplication on the right by a nonzero element of a normed division ring tends to infinity at infinity.

      @[deprecated Filter.inv_nhdsNE_zero (since := "2025-11-26")]

      Alias of Filter.inv_nhdsNE_zero.

      @[deprecated Filter.tendsto_inv₀_nhdsNE_zero (since := "2025-11-26")]

      Alias of Filter.tendsto_inv₀_nhdsNE_zero.

      If s is a set disjoint from 𝓝 0, then fun x ↦ x⁻¹ is uniformly continuous on s.

      theorem UniformContinuousOn.inv₀ {α : Type u_1} [NormedDivisionRing α] {X : Type u_4} [UniformSpace X] {f : Xα} {s : Set X} (hf : UniformContinuousOn f s) (hf₀ : (f '' s) nhds 0) :
      theorem UniformContinuousOn.fun_inv₀ {α : Type u_1} [NormedDivisionRing α] {X : Type u_4} [UniformSpace X] {f : Xα} {s : Set X} (hf : UniformContinuousOn f s) (hf₀ : (f '' s) nhds 0) :
      UniformContinuousOn (fun (i : X) => (f i)⁻¹) s

      Eta-expanded form of UniformContinuousOn.inv₀

      theorem UniformContinuous.inv₀ {α : Type u_1} [NormedDivisionRing α] {X : Type u_4} [UniformSpace X] {f : Xα} (hf : UniformContinuous f) (hf₀ : (Set.range f) nhds 0) :
      theorem UniformContinuous.fun_inv₀ {α : Type u_1} [NormedDivisionRing α] {X : Type u_4} [UniformSpace X] {f : Xα} (hf : UniformContinuous f) (hf₀ : (Set.range f) nhds 0) :
      UniformContinuous fun (i : X) => (f i)⁻¹

      Eta-expanded form of UniformContinuous.inv₀

      theorem TendstoLocallyUniformlyOn.inv₀_of_disjoint {α : Type u_1} [NormedDivisionRing α] {X : Type u_4} {ι : Type u_5} [TopologicalSpace X] {s : Set X} {F : ιXα} {f : Xα} {l : Filter ι} (hF : TendstoLocallyUniformlyOn F f l s) (hf : xs, Disjoint (Filter.map f (nhdsWithin x s)) (nhds 0)) :
      theorem TendstoLocallyUniformlyOn.fun_inv₀_of_disjoint {α : Type u_1} [NormedDivisionRing α] {X : Type u_4} {ι : Type u_5} [TopologicalSpace X] {s : Set X} {F : ιXα} {f : Xα} {l : Filter ι} (hF : TendstoLocallyUniformlyOn F f l s) (hf : xs, Disjoint (Filter.map f (nhdsWithin x s)) (nhds 0)) :
      TendstoLocallyUniformlyOn (fun (i : ι) (i_1 : X) => (F i i_1)⁻¹) (fun (i : X) => (f i)⁻¹) l s

      Eta-expanded form of TendstoLocallyUniformlyOn.inv₀_of_disjoint

      theorem TendstoLocallyUniformly.inv₀_of_disjoint {α : Type u_1} [NormedDivisionRing α] {X : Type u_4} {ι : Type u_5} [TopologicalSpace X] {F : ιXα} {f : Xα} {l : Filter ι} (hF : TendstoLocallyUniformly F f l) (hf : ∀ (x : X), Disjoint (Filter.map f (nhds x)) (nhds 0)) :
      theorem TendstoLocallyUniformly.fun_inv₀_of_disjoint {α : Type u_1} [NormedDivisionRing α] {X : Type u_4} {ι : Type u_5} [TopologicalSpace X] {F : ιXα} {f : Xα} {l : Filter ι} (hF : TendstoLocallyUniformly F f l) (hf : ∀ (x : X), Disjoint (Filter.map f (nhds x)) (nhds 0)) :
      TendstoLocallyUniformly (fun (i : ι) (i_1 : X) => (F i i_1)⁻¹) (fun (i : X) => (f i)⁻¹) l

      Eta-expanded form of TendstoLocallyUniformly.inv₀_of_disjoint

      theorem TendstoLocallyUniformlyOn.inv₀ {α : Type u_1} [NormedDivisionRing α] {X : Type u_4} {ι : Type u_5} [TopologicalSpace X] {s : Set X} {F : ιXα} {f : Xα} {l : Filter ι} (hF : TendstoLocallyUniformlyOn F f l s) (hf : ContinuousOn f s) (hf₀ : xs, f x 0) :
      theorem TendstoLocallyUniformlyOn.fun_inv₀ {α : Type u_1} [NormedDivisionRing α] {X : Type u_4} {ι : Type u_5} [TopologicalSpace X] {s : Set X} {F : ιXα} {f : Xα} {l : Filter ι} (hF : TendstoLocallyUniformlyOn F f l s) (hf : ContinuousOn f s) (hf₀ : xs, f x 0) :
      TendstoLocallyUniformlyOn (fun (i : ι) (i_1 : X) => (F i i_1)⁻¹) (fun (i : X) => (f i)⁻¹) l s

      Eta-expanded form of TendstoLocallyUniformlyOn.inv₀

      theorem TendstoLocallyUniformly.inv₀ {α : Type u_1} [NormedDivisionRing α] {X : Type u_4} {ι : Type u_5} [TopologicalSpace X] {F : ιXα} {f : Xα} {l : Filter ι} (hF : TendstoLocallyUniformly F f l) (hf : Continuous f) (hf₀ : ∀ (x : X), f x 0) :
      theorem TendstoLocallyUniformly.fun_inv₀ {α : Type u_1} [NormedDivisionRing α] {X : Type u_4} {ι : Type u_5} [TopologicalSpace X] {F : ιXα} {f : Xα} {l : Filter ι} (hF : TendstoLocallyUniformly F f l) (hf : Continuous f) (hf₀ : ∀ (x : X), f x 0) :
      TendstoLocallyUniformly (fun (i : ι) (i_1 : X) => (F i i_1)⁻¹) (fun (i : X) => (f i)⁻¹) l

      Eta-expanded form of TendstoLocallyUniformly.inv₀

      @[deprecated NormedDivisionRing.to_continuousInv₀ (since := "2025-09-01")]

      Alias of NormedDivisionRing.to_continuousInv₀.

      theorem TendstoLocallyUniformlyOn.div₀ {α : Type u_1} [NormedDivisionRing α] {X : Type u_4} {ι : Type u_5} [TopologicalSpace X] {s : Set X} {F G : ιXα} {f g : Xα} {l : Filter ι} (hF : TendstoLocallyUniformlyOn F f l s) (hG : TendstoLocallyUniformlyOn G g l s) (hf : ContinuousOn f s) (hg : ContinuousOn g s) (hg₀ : xs, g x 0) :
      TendstoLocallyUniformlyOn (F / G) (f / g) l s
      theorem TendstoLocallyUniformlyOn.fun_div₀ {α : Type u_1} [NormedDivisionRing α] {X : Type u_4} {ι : Type u_5} [TopologicalSpace X] {s : Set X} {F G : ιXα} {f g : Xα} {l : Filter ι} (hF : TendstoLocallyUniformlyOn F f l s) (hG : TendstoLocallyUniformlyOn G g l s) (hf : ContinuousOn f s) (hg : ContinuousOn g s) (hg₀ : xs, g x 0) :
      TendstoLocallyUniformlyOn (fun (i : ι) (i_1 : X) => F i i_1 / G i i_1) (fun (i : X) => f i / g i) l s

      Eta-expanded form of TendstoLocallyUniformlyOn.div₀

      theorem TendstoLocallyUniformly.div₀ {α : Type u_1} [NormedDivisionRing α] {X : Type u_4} {ι : Type u_5} [TopologicalSpace X] {F G : ιXα} {f g : Xα} {l : Filter ι} (hF : TendstoLocallyUniformly F f l) (hG : TendstoLocallyUniformly G g l) (hf : Continuous f) (hg : Continuous g) (hg₀ : ∀ (x : X), g x 0) :
      theorem TendstoLocallyUniformly.fun_div₀ {α : Type u_1} [NormedDivisionRing α] {X : Type u_4} {ι : Type u_5} [TopologicalSpace X] {F G : ιXα} {f g : Xα} {l : Filter ι} (hF : TendstoLocallyUniformly F f l) (hG : TendstoLocallyUniformly G g l) (hf : Continuous f) (hg : Continuous g) (hg₀ : ∀ (x : X), g x 0) :
      TendstoLocallyUniformly (fun (i : ι) (i_1 : X) => F i i_1 / G i i_1) (fun (i : X) => f i / g i) l

      Eta-expanded form of TendstoLocallyUniformly.div₀

      @[instance 100]

      A normed division ring is a topological division ring.

      @[deprecated tendsto_norm_inv_nhdsNE_zero_atTop (since := "2025-11-26")]

      Alias of tendsto_norm_inv_nhdsNE_zero_atTop.

      theorem tendsto_zpow_nhdsNE_zero_cobounded {α : Type u_1} [NormedDivisionRing α] {m : } (hm : m < 0) :
      Filter.Tendsto (fun (x : α) => x ^ m) (nhdsWithin 0 {0}) (Bornology.cobounded α)
      @[deprecated tendsto_zpow_nhdsNE_zero_cobounded (since := "2025-11-26")]

      A normed field is either nontrivially normed or has a discrete topology. In the discrete topology case, all the norms are 1, by norm_eq_one_iff_ne_zero_of_discrete. The nontrivially normed field instance is provided by a subtype with a proof that the forgetful inheritance to the existing NormedField instance is definitionally true. This allows one to have the new NontriviallyNormedField instance without data clashes.

      @[simp]
      theorem NormedField.continuousAt_zpow {𝕜 : Type u_4} [NontriviallyNormedField 𝕜] {n : } {x : 𝕜} :
      ContinuousAt (fun (x : 𝕜) => x ^ n) x x 0 0 n
      @[simp]
      Equations