Documentation

Cslib.Computability.Automata.DA.Prod

Product of deterministic automata. #

def Cslib.Automata.DA.prod {State1 : Type u_1} {State2 : Type u_2} {Symbol : Type u_3} (da1 : DA State1 Symbol) (da2 : DA State2 Symbol) :
DA (State1 × State2) Symbol

The product of two deterministic automata.

Equations
Instances For
    @[simp]
    theorem Cslib.Automata.DA.prod_mtr_eq {State1 : Type u_1} {State2 : Type u_2} {Symbol : Type u_3} (da1 : DA State1 Symbol) (da2 : DA State2 Symbol) (s : State1 × State2) (xs : List Symbol) :
    (da1.prod da2).mtr s xs = (da1.mtr s.1 xs, da2.mtr s.2 xs)

    A state is reachable by the product automaton iff its components are reachable by the respective automaton components.